Request for Proposals for Professional Engineering Services
for
NASTT’s Pipe Bursting Good Practices Training Course
2019 Update and Revisions

Issue Date: Monday, February 25, 2019

Closing Date: 4:00 PM EST - Friday, March 15, 2019

NASTT Contact:
Mr. Michael J. Willmets
NASTT Executive Director
14500 Lorain Avenue #110063
Cleveland, Ohio 44111-9998 USA
Office: 888-993-9935
Email: mwillmets@nastt.org
1.0 BACKGROUND
1.1 The mission of the North American Society for Trenchless Technology, referred to herein as NASTT, is to advance trenchless technology and to promote its benefits for the public and the natural environment by offering quality educational training programs on various trenchless construction methodologies. NASTT provides comprehensive, consensus-based training courses that are non-commercial and intended to grow the trenchless industry. NASTT offers multiple in-depth, high quality courses each year throughout North America and abroad covering targeted trenchless topics such as Cured-in-Place Pipe (CIPP), Horizontal Directional Drilling (HDD), Pipe Bursting, Laterals and New Installation Methods. NASTT training courses are presented by volunteer members of the society with vast experience with trenchless technology methods. NASTT continually strives to improve the quality of the entire educational experience for our attendees through course evaluations and by tracking the many innovative changes in our industry.

2.0 PURPOSE OF THIS RFP
2.1 NASTT requires the services of a civil engineering organization, herein known as the "Consultant", to update the existing course content of NASTT’s Pipe Bursting Good Practices Training Course. The new presentation material must follow the outline as detailed in Appendix ‘A’ of this document. Said outline is the “Table of Contents” for NASTT’s Pipe Bursting Good Practices Guideline, 3rd Edition, 2019; an initiative of NASTT’s Pipe Bursting Center of Excellence.

2.2 Pipe bursting is defined as the replacement of an existing host pipe by various methods of “fragmentation” or “bursting” followed by the pulling-in of new replacement piping. There are several types of bursting methods, including hydraulic, static and pneumatic. This proven construction technique, used for water, sewer and natural gas installations, is recognized as the only method of trenchless rehabilitation that can replace existing piping with a completely new pipe line. Moreover, pipe bursting permits a considerable percent of upsizing of the existing pipe with a larger diameter replacement pipe.

3.0 SCOPE OF WORK
The scope of services required for this assignment includes all of following:

3.1 Review of existing Pipe Bursting Good Practices Training Course material (available from NASTT upon request).
3.2 Verification and updating of all factual information.
3.3 Restructuring of existing course material to conform with Appendix ‘A’.
3.4 Update and replace all photographs and graphs as appropriate.

4.0 QUALIFICATIONS
4.1 The selected Consultant is expected to have an in-depth and contemporary knowledge of the Pipe Bursting industry including Materials, Methodology, Planning, Design, Construction, Geotechnical Applications, Field Practices and On-Site Challenges. Partnering to expand the expertise of the proposed consulting team is welcomed and encouraged.

5.0 INTELLECTUAL PROPERTY
5.1 All copyrighted or proprietary information and materials provided by NASTT to the successful Consultant (hereinafter referred to as the collective “Intellectual Property”) is for the limited authorized use solely in connection with the activities authorized under the proposed assignment and will be subject to the terms and conditions of an Agreement.
5.2 The Intellectual Property is and shall remain at all times the sole and exclusive property of NASTT. The successful Consultant shall acknowledge and adhere to the copyright aspects and regulations set forth under the authority of the International Berne Convention agreeing that copyrights are enforceable in the United States of America and Canada.

6.0 DELIVERABLES
6.1 The submitted proposal shall list the major tasks per a “Project Schedule” complete with an “Estimated Date of Completion” for the entire project.
6.2 Adherence to the Project Schedule is of the utmost importance. The submitted proposal shall include a detailed “Tracking Gantt”, or similar, showing critical path and deliverables.
6.3 A “Cost Proposal” shall be provided and shall include a cost estimate for the entire project and for each activity identified in the Consultant’s Project Schedule.
6.4 A detailed description of the proposed Project Team is required.

7.0 SELECTION CRITERIA
Proposal will be evaluated based on thoroughness, clarity and quality of the material presented, with emphasis on the following.
7.1 Approach and understanding of the assignment.
7.2 Experience with Pipe Bursting projects.
7.3 Merit and strength of assembled Project Team.
7.4 Ability to meet schedule and budget targets.
7.5 Familiarity with NASTT Good Practices Training Courses.
7.6 Financial compensation.

8.0 SELECTION PROCESS
The Consultant will be selected from proposals submitted on time and from only the information received from said submissions. A Selection Committee will evaluate the submissions and recommend the approval of the successful Consultant to the NASTT Board of Directors.

9.0 AWARD
Approval by the NASTT Board of Directors does not constitute an award of contract. The contract award shall not be in place until a formal Agreement between the Consultant and NASTT is executed.

10.0 INQUIRES AND RESPONSES
10.1 All inquiries to the RFP must be submitted by email only to:

 Mr. Michael J. Willmets
 NASTT Executive Director
 Email: mwillmets@nastt.org

10.2 All proposal submittals must be received by email only to:

 Mr. Michael J. Willmets
 NASTT Executive Director
 Email: mwillmets@nastt.org

10.3 All proposals must be received no later than:

 4:00 PM (Eastern Standard Time), Friday, March 15, 2019.
Table of Contents

1. Introduction
 1.1 Introduction
 1.2 Definition
 1.3 Background
 1.4 Overview of the Guidelines
 1.5 Benefits of Trenchless Technology
 1.6 Pipe Bursting Compared to Other Trenchless Technology Rehabilitation Methods
 1.7 Chapter 1 References

2. Applications, Existing Pipe Materials, Pipe Bursting Methods, and Equipment
 2.1 Applications
 2.1.1 Existing Pipe Materials That Are Prime Candidates for Pipe Bursting
 2.1.2 Existing Pipe Materials That Are Not Candidates for Pipe Bursting
 2.1.3 Existing Pipe Materials That Are Challenging for Pipe Bursting
 2.1.4 Existing Asbestos Cement Pipe
 2.1.5 Small Diameter Galvanized Steel Pipe
 2.2 Pipe Bursting Methods
 2.2.1 Pneumatic Pipe Bursting
 2.2.2 Static Pipe Bursting
 2.2.3 When to Use Pneumatic vs. Static Pipe Bursting
 2.2.4 Various Equipment Used for Pipe Bursting
 2.3 Replacement Pipe Materials
 2.4 Connection Materials
 2.5 Chapter 2 References

3. Planning
 3.1 Data Collection
 3.2 Project Feasibility
 3.3 Alternatives Analysis
 3.4 Classification Chart
 3.5 Chapter 3 References

4. Design
 4.1 Design Data Collection
 4.2 Site Investigation
 4.3 Geotechnical Investigation
 4.4 Utility Designation
 4.4.1 Subsurface Utility Engineering
 4.5 Selecting a Replacement Pipe
 4.5.1 Determination of Pulling Loads
 4.6 Evaluating Soil Displacement
 4.7 Ground Vibration
 4.8 Project Layout
 4.8.1 Laydown Yard and Storage Area
 4.9 Noise
 4.10 Work Hours
 4.11 Maintaining Service During Construction
 4.11.1 Pre-chlorinated Pipe Bursting

APPENDIX ‘A’
4.12 Evaluating Cost Factors
4.12.1 Size of Project
4.12.2 Depth of Existing Pipe
4.12.3 Pipe Size and Required Upsize
4.12.4 Number of Required Excavations
4.12.5 Restoration
4.12.6 Productivity
4.13 Permitting
4.14 Preparation of Contract Documents
4.15 Defining Expectations of the Pipe Bursting Project
4.16 Chapter 4 References

5.

Construction

5.1 Submittals and Shop Drawings
5.1.1 Contractor Qualification Submittals
5.1.2 Pipe Fusion Certification Submittals
5.1.3 Pipe Materials and Fittings Submittals
5.1.4 Public Relations Submittals
5.1.5 Work and Site Layout Plan Submittals
5.1.6 Bypass Plan Submittals
5.2 Construction Sequence
5.2.1 Preconstruction Site Investigation
5.2.2 Pipe Fusion
5.2.3 Manhole Preparation
5.2.4 Temporary Bypass Systems
5.2.5 Excavation of Pits
5.2.6 Setup Pipe Bursting Equipment
5.2.7 Pipe Installation
5.2.8 Mainline Reconnections
5.2.9 Service Reconnections
5.2.10 Surface Restoration
5.3 Grade Control
5.4 Unexpected Stoppage of Pipe Bursting Equipment
5.5 Chapter 5 References

6.

Construction Observation

6.1 Review Project Documents
6.1.1 Review Design Plans and Contract Documents
6.1.2 Bid Item Definitions
6.1.3 Confirm Quantity Estimates
6.2 Confirm Pre-site Conditions
6.3 Review Contractor Submittals
6.4 Construction Observation Submittals
6.4.1 Daily Observation Logs
6.4.2 Other Observation or Testing Forms
6.5 Key Construction Observations
6.5.1 Pipe Scraping or Gouging
6.5.2 Alignment of the Pipe Bursting Equipment in Excavations
6.5.3 Measuring the Rate of Advancement of the Pipe Bursting Operation
6.5.4 Locating the Replacement Pipe After Construction
6.5.5 Construction Observation of Backfill and Compaction Activities
6.5.6 Field Testing
6.6 As-Built Documentation
6.7 Chapter 6 References

7. Technology Advancements
7.1 Improvements in Replacement Pipe Materials
7.1.1 Ductile Iron Replacement Pipe
7.1.2 Vitrified Clay Replacement Pipe
7.1.3 Threaded Replacement Pipe
7.1.4 Centrifugally Cast Fiberglass Reinforced Polymer Mortar Replacement Pipe
7.2 Alternate Construction Methods
7.2.1 Drilling a Relief Hole
7.2.2 Windowing
7.3 Equipment Specialization Developments
7.4 Chapter 7 References