IMPLEMENTATION OF AN UPGRADING APPROACH FOR THE NORTHEAST INTERCEPTOR IN WINNIPEG
Together we can design a place where our communities can thrive.
ANY SIZE. ANY LENGTH. ANYWHERE.

Calgary (403) 269.4998 Edmonton (780) 960.6037
www.directhorizontal.com

Trenchless solutions from the sharpest minds in the business!
New pipeline provides Fort McMurray’s south service area with a robust and resilient water supply network.

Associated Engineering is a Canadian-owned multi-discipline company providing trenchless design services for municipalities and contractors. Our services in trenchless technology include:

- Design • Feasibility Studies and Review •
- Condition Assessment • Buried Asset Management •
- Value Engineering and Peer Review •
- Risk and Constructability Assessment •
- Contractor Prequalification •
Tender and Contract Administration • General Engineering during Construction • Construction Inspection and Monitoring •

Our holistic approach considers climate change impacts to create sustainable and resilient solutions. This is our commitment to building better communities.
IN THIS ISSUE:

11 CALL FOR MAGAZINE SUBMISSIONS
12 NO-DIG NORTH 2019 IN CALGARY
21 RATIONALIZATION & IMPLEMENTATION OF AN UPGRAADING APPROACH FOR THE NORTHEAST INTERCEPTOR IN WINNIPEG, MB

DEPARTMENTS:
MESSAGE FROM THE NASTT-NW CHAIR ------- 6
MESSAGE FROM NASTT ---------------------- 8
REACH OUR ADVERTISERS --------------------- 30

ON THE COVER: Downtown view of the city of Calgary, Alberta, Canada. © Brandon Smith | Dreamstime.com
NO-DIG NORTH IS JUST A FEW SLEEPS AWAY!

Trenchless professionals from all three Canadian Chapters – NASTT-BC, NASTT-NW, and NASTT-GLSLA – have been working long and hard on planning No-Dig North. No-Dig North 2019 is being held at the TELUS Conference Center in Calgary, Alberta between October 28 and 30.

As we are only a few weeks away, we can’t keep our excitement contained. If you haven’t heard (where have you been!), the No-Dig North show is a brand-new National Canadian Trenchless Conference that will provide a great opportunity for Owners, Consultants, Industry Experts, Suppliers, and Contractors to reach a larger Canadian audience to showcase the great things that are happening in the trenchless industry.

The response to this conference has exceeded our expectations; it will be the largest-ever Canadian trenchless tradeshow:

- Two keynotes, Mr. Frank Firsching and Dr. Kimberlie Staheli
- 72 exhibitors
- 61 papers presented over two days
- Three regional and one national Project of the Year awards
- Four pre-conference Short Courses

For more information and to register, please visit the Conference’s webpage – www.nodignorth.ca.

Also new this year, we held very successful NASTT-NW mixers in both Edmonton and Calgary. The Calgary mixer was held during the Stampede and the Edmonton one was held in conjunction with the commencement of the fall semester at the University of Alberta. These mixers were a great opportunity for our members, students, and non-members to catch up with colleagues to discover what is happening in the trenchless industry. These won’t be the last; look for further information via email over the coming months for future mixers.

Later this month, our Chapter will also be kicking off the Technical Lunch Programs in both Edmonton and Calgary. At these lunches, we not only highlight our great local projects but also new products, new techniques, and national projects. Watch your emails and our website, www.nastt-nw.com, for additional information on upcoming technical lunches.

I would also like to extend an invitation to our members and remind you all that we are always looking for great topics and new presenters to become active and participate in our Chapter!

I encourage all of our members to take part and bring a friend or coworker to all of our events as they are great networking events!

We are always looking for volunteers, fresh ideas, and new perspectives! If you wish to participate as a volunteer or just provide suggestions on how to improve our Chapter, please do not hesitate to contact me directly at gtippett@nastt-nw.com.

Greg Tippett
Chair, NASTT – Northwest Chapter
Great ideas are just below the surface.

Stantec has the experience to provide advanced trenchless solutions to meet today’s challenging technical situations while providing responsible environmental stewardship.

Whether it is for crossing a river or other environmentally-sensitive areas, or for minimizing disruption to the public in a busy urban setting, Stantec brings the appropriate trenchless technology for developing advanced solutions. We can help with new installations or extending the service life of their infrastructure via rehabilitation. When there’s no easy solution, our linear infrastructure team provides clients with the options they need to reach a successful implementation.

Erez Allouche, Tunnelling and Trenchless Technology Leader
COMING SOON: NO-DIG NORTH

The trenchless industry continues to grow and expand in the US and Canada, and this is particularly obvious this year as a long held dream has now become reality! I am beyond excited to be able to join you at the first annual No-Dig North conference in Calgary this October. In recognition of the need for quality trenchless education in Canada, all three Canadian NASTT Chapters have joined forces for the first time to host a combined trenchless technology conference. None of this would be possible without the dedication of the volunteer members of the Northwest Chapter, the Great Lakes, St. Lawrence and Atlantic Chapter, and the BC Chapter. I would like to extend a very special thank you to the 2019 No-Dig North Conference Chair, Greg Tippett. Greg has poured his heart and soul into this effort and the results are promising to knock your socks off!

The inaugural No-Dig North conference will offer a variety of learning and networking opportunities for trenchless professionals as well as those new to the industry. The conference includes four NASTT Good Practices Guidelines Courses offered as pre-event options. These full-day courses include: HDD Good Practices, New Installation Methods Good Practices, Introduction to Trenchless Technology – Rehabilitation Good Practices, and CIPL Gas Good Practices. All our NASTT Good Practices Guidelines Courses are both non-commercial and peer reviewed and taught by leading industry experts. The courses include continuing education units as well as course materials to take back to the office for use on your next trenchless project.

The conference offers two full days of technical presentations and an exhibit hall bringing you industry innovations for trenchless products and services. The exhibit hall has already sold out – twice! You do not want to miss an opportunity to experience the latest and greatest in our growing industry and to network with your peers.

The No-Dig North conference has been in the works for many years and I cannot thank the regional Chapter volunteers and members enough for your dedication and passion. The Canadian Chapters certainly embrace the mission and vision of NASTT and we value you all as true Trenchless Champions.

I look forward to seeing you at the Telus Convention Centre in Calgary this October.

Michael J. Willmets
NASTT Executive Director
HOBAS in Canada

HOBAS' geographic acceptance is growing, with expansion into Canada. With projects from Vancouver to Newfoundland and many places in between, the HOBAS standard brings corrosion and abrasion resistance, leak-free systems and a long-maintenance free life.
Camera Features:
Truck Mounted Zoom Camera System
312X Zoom Magnification
30 Foot Telescopic Mast
Motorized Pan & Tilt Camera
6 - 1000 Watt Lights/ IR functionality

"1/3 the cost of CCTV Inspection in 1/5 of the time"
"No Flushing Required"

www.ctzoom.ca

CTZoom Technologies
790 Lapointe St. Sudbury
P3A 5N8, Canada
T. 705.524.6372
F. 705.524.6370
don@infratechservices.ca
Call for Submissions

If you would like to submit your project paper or other content and photos for an upcoming issue of this Northwest Chapter magazine, please contact Carlie Pittman, Magazine Committee Chair, at pittmanc@ae.ca.

Editorial submissions for the Northwest Trenchless Journal are welcome and due for our next publication by early April 2020.
HIGHLIGHTS

The NASTT-NW Chapter is proud to be jointly presenting the No-Dig North Conference in partnership with the Canadian Chapters of NASTT. The Conference will take place in Calgary, Alberta on October 28 to 30, 2019 at the TELUS Conference Centre. Pre-event Good Practices Courses will be available on Monday, October 28, 2019. The show will consist of two days with three tracks of technical paper presentations and industry exhibits in the trenchless technology field on October 29 and October 30.

For more information on registration, the program, and our exhibitors, please visit the Conference’s webpage: www.nodignorth.ca.

PLANNING COMMITTEE

• Greg Tippett, Stantec Consulting, Conference Planning Committee Chair
• Remco Kleinlugtenbelt, Thurber Engineering, Technical Committee Chair
• Brett Knievel, Insituform, NASTT-NW
• Dave Krywiak, Stantec Consulting, NASTT-NW
• Carlie Pittman, Associated Engineering, NASTT-NW
• Dave Krywiak, Stantec Consulting, NASTT-NW
• Kevin Bambridge, Robinson Consultants, NASTT-GLSLA
• Gerald Bauer, Stantec Consulting, NASTT-GLSLA
• David Crowder, RVA, NASTT-GLSLA
• Julia Noble, PipeFlo Contracting Corp., NASTT-GLSLA
• Ophir Wainer, T2, NASTT-BC
• Steaphan MacAulay, Global Raymac, NASTT-BC
• Brittany Cline, BMI
• Heather Centorbi, BMI

Thank you to the planning committee for all their hard work and time in putting this event together!

CONFERENCE VENUE

Telus Convention Centre, 120 Ninth Avenue SE, Calgary, AB T2G 0P3

HOTEL

A courtesy block has been reserved at the Hyatt Regency Calgary for $235.00 CAD.

Hyatt Regency Calgary
700 Center Street SE, Calgary, AB T2G 5P6 | 403-717-1234

PRE-EVENT GOOD PRACTICES COURSES

Monday, October 28th 8:00 AM – 4:30 PM

NASTT’S HDD GOOD PRACTICES COURSE

NASTT’s HDD Good Practices Course provides an in-depth overview of Horizontal Directional Drilling (HDD) and covers six topics: operation and application; equipment and materials; planning, including surface and geological investigations, utility surveys, bore planning, and regulations and permitting; jobsite safety; risk reduction, trouble shooting and mitigation; and design.

Dr. Samuel T. Ariaratnam, Professor and Construction Engineering Program Chair, Ira A. Fulton Schools of Engineering at Arizona State University
Dr. Jason Lueke, National Practice Leader for Trenchless Technologies, Associated Engineering

NASTT’S NEW INSTALLATION METHODS GOOD PRACTICES COURSE

NASTT’s New Installation Methods Good Practices Course cover the following topics: the trenchless methods used for grade and alignment control and guidance; the limitations and advantages of each method discussed; the steps you need to follow “to know the underground”; how to establish the invert for a proper launch; the history, sizes, equipment options and process of excavating through different ground types and pipe materials; ways to track where the pipe is located underground; installation and jacking forces and ways to reduce these forces; the best method to use through actual case studies which are used to illustrate what can go wrong if the project is not designed for success. This course will review auger boring, pipe ramming, pipe jacking, and the pilot tube method.

Don Del Nero, Tunnel Practice Leader, Stantec
Dr. Kimberlie Staheli, President and Founder, Staheli Trenchless Consultants
NASTT’s Introduction to Trenchless Technology – Rehabilitation Good Practices Course

This introductory short course is ideally suited for both newcomers to the industry and for anyone who is interested in seeking a refresher course on trenchless technology methods. The rehabilitation section provides an overview of the methods and techniques available to public works and utilities to inspect repair and rehabilitate water and wastewater systems, including watermains, sewers, laterals, and maintenance holes (MH) with minimal excavation.

Kevin Bainbridge, Rehabilitation Technical Lead, Robinson Consultants Inc.

Jennifer Glynn, P.E., Senior Project Manager, Woodard & Curran

NASTT’s CIPL Good Practices Course

NASTT’s CIPL Good Practices Course provides an in-depth overview of this valuable trenchless application. The following topics will be discussed: design & construction; design considerations for natural gas pipelines; CIPL application range; key notes for a successful project; CIPL testing; and inspection.

George Ragula, Distribution Technology Manager, PSEG

MetaFLO TECHNOLOGIES

Leaders in Liquid Waste Solidification Solutions

MetaFLO is dedicated to providing innovative solutions for the treatment of wet spoils from directional drilling activity through our network of distributors.

- On-site slurry solidification
- Save on amendment addition trucking and disposal
- Disposal of material as a solid
- Local distribution
- Environmentally safe
- Regulatory compliance

Applications
- Directional Drilling
- Tunneling
- Impacted Slurry
- Hydro Excavation

Contact Us
Andrew McNabb
+1 (647)-217-5625
amcnabb@metaflotech.com
PRE-EVENT GOOD PRACTICES COURSES

OCT 28 | 8:00 A.M. - 4:30 P.M.

NASTT’s HDD Good Practices Course
Dr. Samuel T. Ariaratnam, Professor and Construction Engineering Program Chair, Inst. A. Fulton School of Engineering at Arizona State University, Dr. Jason Lueke, National Practice Leader for Trenchless Technologies, Associated Engineering

NASTT’s New Installation Methods Good Practices Course
Don Del Nero, Tunnel Practice Leader, Stantec, Dr. Kimberlle Stathel, President and Founder, Stathel Trenchless Consultants

NASTT’s Introduction to Trenchless Technology – Rehabilitation Good Practices Course
Kevin Bainbridge, Rehabilitation Technical Lead, Robinson Consultants Inc., Jennifer Glynn, P.E., Senior Project Manager, Woodard & Curran

NASTT’s CIPL Good Practices Course
George Ragula, Distribution Technology Manager, PSEG

<table>
<thead>
<tr>
<th>FROM</th>
<th>TO</th>
<th>TRACK 1 AM</th>
<th>TRACK 2 AM</th>
<th>TRACK 3 AM</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30</td>
<td>9:15</td>
<td>Kick-off Breakfast</td>
<td>Welcome Address, Keynote, and Awarding all Projects of the Year</td>
<td></td>
</tr>
</tbody>
</table>
| 9:25 | 9:50 | Horizontal Drain Installation Under a Building | Rehabilitation of Large Non-Circular Combined Sewers Using Reinforced CIPP | Dixie Road & Queen Elizabeth Highway Crossing Sanitary Sewer
| 9:50 | 10:15 | Trenchless CIP/CN Crossings - Relocation Enmax Utilities for Green Line LRT | Addressing The Shortcomings of a Sampling Strategy In CIPP Quality Assurance Programs | East Brampton Trunk Sewer Twinning
| 10:15 | 11:00 | Coffee Break | Pressure Transfer Between Reinforced Concrete Jacking Pipe in Microtunneling | Cryl/Althuser, Jackcontrol
| 11:00 | 11:25 | BC Chapter Project of the Year | Great Road Storm Trunk Sewer Rehabilitation |
| 11:25 | 11:50 | GLSLA Chapter Project of the Year | Experimental Investigation of a Steel Ellipse Reinforced With Non-Reinforced CIPP | Long Distance Microtunneling With Direct Pipe® and E-Powerpipe®
| 11:50 | 12:15 | NW Chapter Project of the Year | Highland Creek Sanitary Trunk Sewer Rehabilitation | A Challenge Packed Drive - Microtunneling Crossing of the Don River

TUESDAY

OCT 29

<table>
<thead>
<tr>
<th>FROM</th>
<th>TO</th>
<th>TRACK 1 PM</th>
<th>TRACK 2 PM</th>
<th>TRACK 3 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:15</td>
<td>1:45</td>
<td>Lunch (Inside Exhibit Hall)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 1:45 | 2:10 | Ryan Creek Mitigation Project | A Mechanical Fitting Eliminates the Requirement for Adhesion in CIPP Internal Service Restatement | Feedermain Relocation by Microtunneling Downstream of the Glenmore Dam and Reservoir
| 2:10 | 2:35 | Tunneling-Induced Deformations and Risk of Damage to Adjacent Structures | NASTS Trunk Sewer Rehabilitation |
| 2:35 | 3:00 | Performance of Water Pipe Joints Subjected to Differential Ground Motion | Halifax Water Northwest Arm Trunk Sewer Rehabilitation | Eastern Service Area Secondary Connection Project
| 3:00 | 3:45 | Coffee Break |
| 3:45 | 4:10 | Injection Grouting in Municipal Sewers With Remotely Operated Equipment | 13th Avenue Watermain Lining | Valley Crossing Project
| 4:10 | 4:35 | SERTS North Rehabilitation | North Minico STS Rehabilitation | Inglewood Sanitary Trunk
| 4:35 | 5:00 | Solids and Liquids Separation, Benefiting the Environment - SDTT Microtunnel | PVC Fold and Form Installations | North Interceptor Sanitary Trunk - Phase 3, Project 9

ORGANIZED BY:

PLATINUM SPONSOR:

GOLD SPONSORS:

REGISTRATION

- Two days of technical paper presentations
- Pre-event Good Practices Courses (Monday, Oct. 28, 2019)
- NASTT’s HDD Good Practices Course
- NASTT’s New Installation Methods Good Practices Course
- NASTT’s Introduction to Trenchless Technology – Rehabilitation Good Practices Course
- NASTT’s CIPL Good Practices Course

OPENING RECEPTION

ALL ATTENDEES

MONDAY, OCT 28, 5:30 P.M. – 7:30 P.M.

REGISTRATION FEES

- Early Bird (before Oct 1): $499
- Regular (Oct 1 - Oct 17): $549
- Student (with valid ID): $349

REGISTRATION INFORMATION

- Visit nodignorth.ca for more information
- Please contact: info@nodignorth.ca

SCHEDULE

- Kick-off Breakfast
- Welcome Address, Keynote, and Awarding all Projects of the Year
- Coffee Break
- Lunch (Inside Exhibit Hall)
- Coffee Break

EXHIBITS

- 120+ Exhibitors
- Exhibitor rates available on website

LOCATION

- The Telus Convention Centre in Calgary, Alberta, Canada.

KEYNOTE SPEAKERS

- Dr. Samuel T. Ariaratnam
- Dr. Jason Lueke
- Don Del Nero
- Stathel Trenchless Consultants
- Kevin Bainbridge, Stantec Consulting
- Jennifer Glynn, Woodard & Curran
- George Ragula, PSEG

SPEAKER LINEUP

- Dr. Gerhard Lang, Herrenknecht AG
- Remco Kleinlugtenbelt, No-Dig North
- Paul Dedeluk, Associated Engineering
- Norman Joyal, McMillen Jacobs Associates
- Tim Johnston, SALOC
- Trevor Moningka, Stantec Consulting
- Halina Water
- Parking and Transportation

ADDITIONAL EVENTS

- NASTT’s CIPL Good Practices Course
- NASTT’s HDD Good Practices Course
- NASTT’s New Installation Methods Good Practices Course
- NASTT’s Introduction to Trenchless Technology – Rehabilitation Good Practices Course
- NASTT’s CIPL Good Practices Course

REGISTRATION FEES

- Early Bird (before Oct 1): $499
- Regular (Oct 1 - Oct 17): $549
- Student (with valid ID): $349

REGISTRATION INFORMATION

- Visit nodignorth.ca for more information
- Please contact: info@nodignorth.ca
REGISTER IS NOW OPEN

Register now to attend the 2019 No-Dig North show at the Telus Convention Centre in Calgary, Alberta, Canada.

The show will consist of:
- Pre-event Good Practices Courses (Monday, Oct. 28, 2019)
- Two days of technical paper presentations
- Industry exhibits
- Networking opportunities
- And more!

nodignorth.ca

<table>
<thead>
<tr>
<th>FROM</th>
<th>TO</th>
<th>TRACK 1 AM</th>
<th>TRACK 2 AM</th>
<th>TRACK 3 AM</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30 AM</td>
<td>8:30 AM</td>
<td>Inspection/Maintenance Technologies</td>
<td>Registration / Continental Breakfast</td>
<td>Pipe Bursting/Splicing/Eating/Extraction</td>
</tr>
<tr>
<td>8:30 AM</td>
<td>9:20 AM</td>
<td>Managing the Rising Costs of Fluid Disposal</td>
<td>Coleman Tunnel</td>
<td>Overview of Lateral and Main Lateral Connection Lining and Sealing Technologies</td>
</tr>
<tr>
<td>8:55 AM</td>
<td>10:00 AM</td>
<td>Undervalued Information in Underground Construction</td>
<td>Storm Sewer Pipe Failure</td>
<td>City of Redding Enterprise Sewer Pipe Bursting</td>
</tr>
<tr>
<td>9:20 AM</td>
<td>10:25 AM</td>
<td>Major Mackenzie Drive Watermain</td>
<td>Local and Trunk Sewer Asset Condition Assessment Program</td>
<td>Enbridge Gas/Bell Canada Project</td>
</tr>
<tr>
<td>9:45 AM</td>
<td>11:00 AM</td>
<td>Coffee Break</td>
<td>Coffee Break</td>
<td>Andy Bralthwaite, Hammerhead Trenchless</td>
</tr>
<tr>
<td>10:30 AM</td>
<td>11:10 AM</td>
<td>Canadian Project of the Year</td>
<td>Canadian Project of the Year</td>
<td>Spline Lock PVC Pipe by HDD and in a Casing Pipe</td>
</tr>
<tr>
<td>11:10 AM</td>
<td>11:30 AM</td>
<td>West Inter Lake Regional Water Services Commission Phase 2 Breach Peel</td>
<td>Primary Trunk Condition Assessment</td>
<td>The Risks and Realities of HDD Construction -- Ed Alouche, Stantec Consulting</td>
</tr>
<tr>
<td>11:35 AM</td>
<td>12:00 PM</td>
<td>What is HD Bore (HDB)? James Murphy, UniversalPegasus International</td>
<td>Advanced Condition Assessment Strategy for Critical Mains: City of Calgary Case Study</td>
<td>Spline Lock PVC Pipe by HDD and in a Casing Pipe</td>
</tr>
<tr>
<td>WEDNESDAY</td>
<td>OCT 30</td>
<td></td>
<td></td>
<td>Preston Creelman, NAPCO Royal Pipe & Fittings</td>
</tr>
<tr>
<td>12:00 PM</td>
<td>1:30 PM</td>
<td>Lunch (Inside Exhibit Hall)</td>
<td>Lunch (Inside Exhibit Hall)</td>
<td></td>
</tr>
<tr>
<td>1:30 PM</td>
<td>2:00 PM</td>
<td>Detailed 3D Modelling of Pullback Compared to Actual</td>
<td>UE on LRT</td>
<td>Pipe Ramming Starts the Maxi Rig on the Right Foot</td>
</tr>
<tr>
<td>1:30 PM</td>
<td>2:00 PM</td>
<td>Managed Water Supply Rehabilitation</td>
<td>Ophir Wainer, T2 Utility Engineers</td>
<td>Alan Goodman, Hammerhead Trenchless</td>
</tr>
<tr>
<td>1:30 PM</td>
<td>2:00 PM</td>
<td>Located Under Active Railroad in Southeast Florida</td>
<td>Sewer Defect Detection and Classification Using</td>
<td>King City Siphon - Design and Construction of a</td>
</tr>
<tr>
<td>1:30 PM</td>
<td>2:00 PM</td>
<td></td>
<td>Deep Convolutional Neural Network</td>
<td>Vertical Curve Microtunnel</td>
</tr>
<tr>
<td>1:30 PM</td>
<td>2:00 PM</td>
<td></td>
<td>Saeed Moradi, Concordia University</td>
<td>Brenden Tippets, Michels Tunneling</td>
</tr>
<tr>
<td>2:00 PM</td>
<td>3:00 PM</td>
<td>Reducing the Risk of Cross Bores</td>
<td>Sylvan Lake Regional Wastewater Transmission Line</td>
<td></td>
</tr>
<tr>
<td>2:00 PM</td>
<td>3:00 PM</td>
<td></td>
<td>Samuel Fritz, Stantec Consulting</td>
<td></td>
</tr>
<tr>
<td>2:00 PM</td>
<td>3:30 PM</td>
<td>Coffee Break</td>
<td>Coffee Break</td>
<td></td>
</tr>
<tr>
<td>3:00 PM</td>
<td>4:00 PM</td>
<td>Sensitivity of the Cavity Expansion Model to Variations in Input Parameters for Specific Soil Types</td>
<td>Trenchless Integrity Pipeline System</td>
<td></td>
</tr>
<tr>
<td>3:00 PM</td>
<td>4:00 PM</td>
<td></td>
<td>Samuel Wilson, CCI</td>
<td></td>
</tr>
<tr>
<td>3:00 PM</td>
<td>4:00 PM</td>
<td>Kettle River Horizontal Directional Drill Crossing: Design Approach to Reassess HDD After an Open-C</td>
<td>Norlite North Saskatchewan River Crossing</td>
<td></td>
</tr>
<tr>
<td>3:00 PM</td>
<td>4:00 PM</td>
<td></td>
<td>Norman Joyal, McMillen Jacobs Associates</td>
<td>Scott Medynak, Enbridge</td>
</tr>
<tr>
<td>3:00 PM</td>
<td>4:00 PM</td>
<td>Alberta Products Pipeline Replacement</td>
<td>SewerVUE Technology</td>
<td></td>
</tr>
<tr>
<td>3:00 PM</td>
<td>4:00 PM</td>
<td></td>
<td>Csaba Ekes, SewerVUE Technology</td>
<td></td>
</tr>
</tbody>
</table>

QUESTIONS? PLEASE CONTACT:
Gret Tippett, Chair, NASTT-NW
Email: gtippett@nastt-nw.com

Remco Kleinlugtenbelt, No-Dig North 2019 Program Chair
Email: rkleinlugtenbelt@thurber.ca

EXHIBITOR OR SPONSORSHIP QUESTIONS? PLEASE CONTACT:
Brittany Cline, Events Manager
Email: bccline@benjaminmedia.com
Phone: 330-467-7588
Empipe Solutions Limited specializes in trenchless wastewater systems inspection, rehabilitation solutions for your water and maintenance and rehabilitation. Leveraging the decades of industry experience of our management team and on-site crew leaders, all of Empipe’s team members continually strive to exceed customers’ expectations, day in and day out. Empipe offers a balance of value-added ‘tried, tested and true’ products and services, along with new and unique technologies. This expectancy of your assets.

From coast to coast in Canada, Empipe has always proudly provided our customers with our customers have the best possible solutions for improving the performance and life experience, results and the goal of setting a new standard of attention and service. We continue to hold this objective as the driving force of our business.
Empipe Solutions Limited specializes in trenchless wastewater systems inspection, maintenance and rehabilitation. Leveraging the decades of industry experience of our management team and on-site crew leaders, all of Empipe's team members continually strive to exceed customers' expectations, day in and day out. Empipe offers a balance of value-added 'tried, tested and true' products and services, along with new and unique technologies. This combination of skills and tools allow Empipe to accurately identify and avoid issues. This ensures our customers have the best possible solutions for improving the performance and life expectancy of your assets.

From coast to coast in Canada, Empipe has always proudly provided our customers with experience, results and the goal of setting a new standard of attention and service. We continue to hold this objective as the driving force of our business.

WE ARE DRIVEN BY OUR VISION

CCTV INSPECTION | JETTING | REAMING
C.I.P.P. | SPRAY APPLIED COATINGS
MANHOLE REHABILITATION

Contact Us For A Free Estimate
888.659.7535
MAKING BORING GREAT SINCE 1966
MICHAEL BYRNE MFG

- Auger Boring Machines
- Augers • HDD Supplies
- Cutting Heads (Hard Rock)

Michael Byrne
72” Machine
installing 420’
of 66” casing,
on time, online,
on grade

1855 Earth Boring Rd
PO Box 444
Manseld, Ohio 44901
419-525-1214
ByrneGroup.com
Email: jweist@byrnegroup.com
dmiller@byrnegroup.com

RAPID ONSITE SOLIDIFICATION

Utilizing the Rapid, we will get on and off your ROW as quickly as possible by solidifying up to 1,000 m³/shift.

ALLSTREAMWASTE.COM | WESTERN CANADA: 403-879-9192 | EASTERN CANADA: 519-636-2974
Got Aging INFRASTRUCTURE?

Attend the NASTT 2020 No-Dig Show for trenchless solutions to YOUR aging infrastructure.

Technical Papers Networking Events Innovations Industry Exhibits

“NASTT’s annual No-Dig Show provides me with the opportunity to keep abreast of the latest innovations in the trenchless market, and also the innovative ways that trenchless technology has been applied to solve challenging projects in a cost effective manner with the least disruption to the general public and the environment.”

Dave Krywiak | Principal, Stantec

NODIGSHOW.COM
YOU KNOW THE DRILL.

No matter how big the job, Brandt delivers the underground construction equipment you need with support that keeps you digging. A full range of products from American Augers, Hammerhead Trenchless, and Ditch Witch are now available from Brandt so you can get equipment to suit any task, all in one place. From Ditch Witch’s ride-on MT12 Microtrencher to American Auger’s 72-1200 Auger Boring Machine that delivers a maximum thrust/pullback of 1.2 million pounds – Brandt has you covered.

Best of all, these machines are backed by Brandt; the best-trained and most committed 24/7 after-sales support team in the business. That’s Powerful Value. Delivered.
ABSTRACT
The North End Water Pollution Control Centre (NEWPCC) handles more than 65% of the daily wastewater load for a city of 780,000. The Northeast (NE) Interceptor is one of three key interceptors that service the NEWPCC and has a critical river crossing immediately upstream of the plant.

The NE Interceptor services approximately 2,300 ha (5,685 acres) of land in the northeast quadrant of Winnipeg, and crosses the Red River in a multiple-barrel siphon configuration as its final leg prior to discharging into the Main Interceptor and NEWPCC. The original crossing is currently at capacity during wet weather flow events and has limited redundancy to facilitate inspection and future rehabilitation works. The interceptor river crossing is in need of additional capacity to permit development and reduce basement flooding risk in the upstream catchment.

This paper reviews the predesign, design, and procurement process to rationalize upgrading of this complex crossing. Horizontal Directional Drilling (HDD), Direct Pipe, and Microtunnelling (MTBM) technologies were reviewed in considerable detail to balance operational hydraulic considerations, monitoring requirements to meet regulatory compliance, and wide variances in construction uncertainty. Expected outcome analysis was used to assess anticipated construction phase variances and operational and environmental monitoring requirements had a very significant impact on the manner in which design for each alternative needed to evolve to be considered truly equal alternatives in a life cycle context. The project was eventually bid using MTBM technology in order to balance construction risk while achieving the design objectives of the project.

INTRODUCTION
The Northeast Interceptor and Red River siphon crossing were constructed in 1971 to service the growing northeast quadrant of the City of Winnipeg and convey flows to the City’s North End Water Pollution Control Centre (NEWPCC). Flows from the 2,300 ha separated sewer district are conveyed by gravity through an interceptor sewer constructed via both hand mining and open cut methods using both precast and monolithic concrete pipe materials in diameters as large as 1800 mm. Figure 1 depicts the catchment area for the interceptor.

The Red River siphon crossing is located less than 0.5 km from where it discharges to the City’s Main Interceptor at the...
EXPERIENCED IN ALL TYPES AND SIZES OF CROSSINGS

Environmental Sensitive Area Crossings
Rivers | Creeks | Ravines

CERTIFICATE OF RECOGNITION

LATEST TECHNOLOGY IN NAVIGATION SYSTEMS

COMMITTED TO SAFETY AND TO OUR ENVIRONMENT

EQUIPPED WITH 110,000 LBS TO 440,000 LBS CAPACITY DRILLS

www.precisecrossings.com
Spruce Grove, Alberta | P. (780) 962.6882 | Toll Free. (866) 962.6882
NEWPCC site. Immediately upstream and downstream of the siphon crossing, the interceptor consists of hand-mined, 1,800 mm monolithic concrete pipe. The existing 500 and 800 mm steel siphons were installed on the river bottom by weighing the steel pipes with concrete blocks and sinking them, likely in winter from the river ice. At the banks, the siphon pipes were installed via open cut methods and connected to the interceptor via large siphon chambers, complete with an upstream overflow to the river. Figure 2 highlights the cross section of the existing interceptor.

Since its construction, the northeast quadrant of the City has seen increased growth and currently the existing siphon crossing is at capacity during large wet weather events. Further, with the existing siphons nearing the end of their original design life, additional redundancy under dry weather conditions was required to facilitate rehabilitation. The original design and construction of the crossing included a third 900 mm sluice gate and wall penetration pipe to allow for future upgrading of the siphon via the installation of a third pipeline across the river. However, changes to environmental regulations and advancements in trenchless technologies made the completion of instream pipe installations impractical, and thus alternative means of augmenting capacity of this critical crossing were required.

FUNCTIONAL DESIGN

Functional design for the crossing was undertaken by the City of Winnipeg and Associated Engineering. Associated Engineering was engaged in 2015 to complete an options study analyzing methods to increase the capacity of the siphon crossing. Due to the constraints on augmenting capacity in accordance with the original design, the study considered five options that considered site conditions and adjacent infrastructure. The options considered were:

- Single open cut crossing following the original design concept
- Horizontal Directional Drilling (HDD) crossing (single and multiple pipes)
- Microtunnelling (MTBM) crossing (single and multiple pipes)
- Large diameter utility tunnel
- New pump station and force main on the adjacent vehicular bridge

The evaluation process included high-level hydraulics and reviews of constructability, environmental impact/regulations, maintenance, operability, security, and social impact. Utilizing stakeholder workshops and an Analytical Hierarchy process, the final recommendation was to move forward with the installation of a single 600 mm HDD siphon to augment the existing crossing.

PRELIMINARY HYDRAULICS

Following completion of the functional design process, AECOM and Associated Engineering (HDD sub-consultant) were engaged by the City of Winnipeg in 2016 to undertake preliminary design, detailed design, and contract administration of a new 600 mm crossing at the site of the existing NE Interceptor Red River siphon crossing. Reviewing system hydraulics and sizing of the new siphon was a significant component to the preliminary design process and ultimately played a large role in selecting the appropriate installation technology.

The City’s NEWPCC collection system utilizes a series of pump stations, force mains, and large diameter interceptor sewers to collect flows from the large number of combined sewer districts that it services, many of which predate construction of the NEWPCC in the 1930s. Configuration and operation of the NEWPCC pump station relies on the Main interceptor, Northwest Interceptor, and NE Interceptor for storage and buffering. Due to the proximity of the NE Interceptor Red River crossing to the NEWPCC, downstream water elevations are greatly affected by wet weather flows from throughout the collection system and by the NEWPCC pump station operations.

Hydraulics for the Red River crossing and the rest of the collection system were assessed utilizing InfoWorks CS software. Considerations for the hydraulic modeling and design included:

- Implementation of the City’s Combined Sewer Overflow (CSO) master plan (currently in development)

SITE CONSTRAINTS

The area where the existing interceptor and river crossing are located has seen considerable development since its construction in the early 1970s, including a four-lane arterial road (Chief Peguis Trail) immediately north of the site and a large apartment complex immediately south of the crossing on the upstream (east) side of crossing, as shown in Figure 3. The apartment complex, which formerly permitted City access to the existing upstream siphon chamber through an adjacent parking lot, commenced an expansion project in 2016 which eliminated both the City’s access to the chamber and a majority of available
laydown area on the east side of the crossing. The east site is shown in Figure 3. The west side of the crossing is located within the City-owned Kildonan Park Golf Course, as shown in Figure 4.

In addition to the limited working space, at the time the project was going for tender the City of Winnipeg was undertaking an extension of their multiuse path network along the Chief Peguis Trail right of way within the project area.

As a result of the limited space, the need to manage two concurrent construction projects, and meet stakeholder requirements (City of Winnipeg Golf Services), options were developed for the following criteria:
- Shaft locations
- Laydown areas
- Access roads

Options were developed based on considerations of short term impact on adjacent land users, constructability, the adjacent multiuse path construction, and long-term accessibility for City crews. While the compact site was ideally suited for a MTBM crossing, which was ultimately chosen, working solutions for all trenchless technologies in consideration were developed.

GEOTECHNICAL CONSIDERATIONS
A significant amount of geotechnical information was available at the site due to the adjacent Kildonan Settlers Bridge (Chief Peguis Trail), and a 600 mm HDD feeder main crossing which had recently been completed north of the Kildonan Settlers Bridge. To supplement the existing information, three new bore holes were completed in 2016, including one within the river. The new boreholes were advanced into the bedrock to obtain rock quality information along the crossing alignment. Site conditions were found to consist of limestone bedrock (aquifer), overlain by clay/silt till, lacustrine clays, and alluvial deposits.

In addition to assisting with bore path design, the geotechnical information was utilized to model river bank stability. Assessment of river bank stability is critical for any river crossing to ensure that new infrastructure (chambers and piping) is placed outside of high risk failure zones. While the modeling found that portions of the existing crossing had a factor of safety against failure lower than what is recommended by current design practice, the placement of new chambers immediately behind the existing chambers (away from the river) in conjunction with an HDD, Direct Pipe, or MTBM tunnel alignment met the requirements for a minimum factor of safety of 1.5.

A hydrogeological investigation was undertaken during the preliminary design phase due to the presence of an underlying pressurized limestone aquifer. Limestone conditions and production rates of the limestone aquifer in the Winnipeg area can vary considerably, and the presence of nearby groundwater users necessitated an investigation to quantify the effects of dewatering, and develop contractual controls for working within the aquifer if necessary.

Friesen Drillers was engaged to undertake the study. The contractor installed two test wells at each shaft location to facilitate pump tests. In addition to facilitating the pump test, the wells were installed and positioned in such a way that would permit their use for dewatering if permitted. The hydrogeological study found that:
- Drawdown of the aquifer to permit construction of deep MTBM shafts would result in a large drawdown cone affecting numerous groundwater users
- Proximity to the Red River would likely result in a cross connection to the river, which could dramatically increase pumping rates and potentially contaminate the aquifer

As a result of the findings, the construction contract was structured to prevent drawdown of the limestone aquifer by placing limits on groundwater dewatering and making the construction of sealed construction shafts a requirement.

REGULATORY COMPLIANCE
As the Red River is considered a navigable water body, the installation of a new river crossing is subject to Transport Canada regulations in addition to requirements set out by the Department of Fisheries and Oceans Canada (DFO). As discussed in preceding sections, regulatory changes and advances in trenchless technologies has made open cut crossings a thing of the past. As the intended means of completing this crossing was through the use of a trenchless technology, regulatory submissions with respect to the crossing were limited to the risks posed to the water body itself and largely related to the risk of hydrofracture for a HDD crossing.

SELECTION OF TRENCHLESS TECHNOLOGIES
The following three trenchless technologies were reviewed as part of the design process:
- Microtunnelling (MTBM)
- Horizontal Direction Drilling (HDD)
- Direct Pipe

MICROTUNNELLING:
Microtunnelling is a steerable pipe jacking process that provides continuous support
to the excavation face and tunnel bore. Significant technical advances and increases in the utilization of microtunnelling have occurred in North America in the past decade permitting the underground installation of small to large diameter pipes in virtually all ground conditions with minimal surface disturbance. Generally, microtunnelling refers to the process of progressing a MTBM through the soil (or rock) by advancing a pipe string from a launch shaft.

Microtunnelling was considered to be a good fit for the site conditions, which required a compact construction footprint, low noise, and tunnelling through bedrock. Further, there was no issue with increases in the sewer diameter, as the need for tunnel face/MTBM access would typically dictate the installation of a 1,200 mm minimum internal diameter tunnel, regardless of the required siphon size. The biggest challenge, however, was constructing nearly 25 m deep shafts to facilitate the tunnelling process.

Pipe materials considered for use with a MTBM installation included Reinforced Concrete Pipe (RCP), steel and Glass Fibre Reinforced Polymer (GFRP) pipe. Requirements for each material were developed and included in the construction contract, allowing contractor to work with familiar materials while maintaining the long-term design intent for the crossing.

HORIZONTAL DIRECTIONAL DRILLING: Horizontal Directional Drilling (HDD) utilizes horizontal drilling equipment to bore a path from grade beneath the river and back up to grade on the other side. Once a pilot hole is complete, the process is then repeated with sequentially larger boring heads until the required size is achieved. Once the bored hole is large enough, the pipe string is pulled into place. Figure 5 depicts the proposed HDD profile for this project. This is an advantageous means of installing river crossings as it does not require the construction of shafts for installation of the pipe itself.

While HDD was originally selected as the preferred trenchless technology for installation of the siphon, the increase in pipe diameter significantly increased installation risks with the need for a larger bore diameter. Notwithstanding the increase in construction risk, the feasibility of HDD was evaluated considering both the use of steel and HDPE pipe materials. For an HDPE crossing, the applied external and construction loads dictated the use of a 1,200 mm DR 9 HDPE pipe. At the time of design, pipe of this diameter and thickness was not available from producers in North America. The geometry of the crossing was dictated by a number of factors including pipe material, allowable pipe/drill rod bending radii, native soils, hydrofracture risk, and the crossing geometry itself. Evaluating the use of steel pipe had to take into account the allowable bending radius and development of outer fibre stress within the steel pipe wall.
The analysis found that while it was technically feasible to install a 900 mm steel pipe meeting the geometric site constrains governed by the tie in locations, there was little allowance for steering misalignment.

DIRECT PIPE:
Direct Pipe is a new technology in the North American marketplace. It generally combines the features of microtunnelling and HDD. With Direct Pipe, a MTBM bore head is advanced along a bore path from surface, similar to HDD. The carrier pipe is used as the push string. This allows for installation of the carrier pipe in a single pass, as opposed to the multiple ream passes generally required by HDD. It also eliminates the expense of deep exit and entry shafts required for microtunnelling.

Direct Pipe advances the pipe string utilizing a pipe thruster. The pipe thruster is set up at a launch pit and utilizes hydraulic clamps to grip the pipe while hydraulic cylinders push the pipe string into the bore hole, advancing the MTBM. Due to the forces required to drive the MTBM and pipe string, Direct Pipe requires the use of a heavy wall steel pipe. The pipe string is pre-welded and requires relatively flat entrance angles to aide in MTBM advancement and pipe string handling, similar to HDD. However, the continuously supported tunnel bore and slurry pump system removing spoils from the hole results in significantly lower drilling pressures, as the installation utilizes drilling fluids for lubrication and soil stabilization similar to microtunnelling.

As a Direct Pipe installation would follow the same alignment as a HDD installation, it encounters the same stress development issues as the HDD option. In addition, the need to drive through both fine grained overburden soils and limestone bedrock requires a complicated MTBM cutting tool setup and may result in the need to install a casing pipe down to bedrock to permit tunnelling through the mixed face conditions.

EVALUATION:
Due to the constructability issues identified for both the HDD and Direct Pipe options, AECOM and Associated Engineering initiated discussions with qualified HDD and Direct Pipe contractors to gauge the installation risks for this crossing. The issues with tunnelling through mixed ground for the Direct Pipe installation and the limited tolerance for alignment errors for both technologies, both HDD and Direct Pipe were not recommended for use on this project. As a result, the crossing was designed and tendered as a microtunnelling crossing. A summary evaluation of each installation method is shown in Table 1.

DETAILED DESIGN
Detailed design and specification development for the crossing was completed with the goal of maximizing the flexibility of the successful contractor to utilize familiar shaft construction and tunnelling techniques while maintaining the design intent and long term performance of the completed siphon.

MTBM INSTALLATION:
The MTBM alignment was governed largely by the elevation of the limestone bedrock. Geotechnical information for the site showed the top of bedrock to be an elevation ranging from 209.5 m to 210.25 m above mean sea level.

The limestone was overlain by layers of silt, clay, and till with the river invert at approximately 214.5 m. With insufficient room to tunnel above the bedrock and the risk of encountering varying soil conditions, bedrock outcrops, and large boulders, a tunnel drive within the limestone bedrock was not recommended.
bedrock was required. Figure 6 depicts the approximate MTBM alignment with the drive completely within the bedrock.

While tunnelling within bedrock has the advantage of a consistent tunnelling medium, there are risks associated with a discontinuous bedrock surface, karstic features, and fractures within the upper bedrock strata. The geotechnical investigation found Rock Quality Designations (RQDs) within the limestone ranged from 20% to 100% with compressive strengths as high as 149.6 MPa. Typically, the top several meters of bedrock had RQD values above 75%. The downstream side of the tunnel alignment was set with a lower invert of 205.5 m, which provided approximately 1.5D of cover to top of bedrock at the end of the drive.

CHAMBERS AND CONNECTIONS:

Due to the tight space constraints and the need to construct nearly 25 m deep sealed shafts into bedrock, the final chambers were designed as circular structures. The circular structures were consistent with the anticipated shaft construction methods, including secant piles or sunk caissons. If a sunken caisson was utilized, the contractor was provided the option of incorporating the caisson as part of the final structure. For either case, the shaft would become the outer formwork for the chamber, thereby minimizing the overall shaft diameter required.

To further maximize flexibility for different shaft construction techniques, the MTBM launch/reception shafts and siphon chambers were constructed off line from the existing interceptor and siphon chambers, as shown in Figure 7.

Connections to the existing interceptor were to be completed using a cast-in-place reinforced concrete collar connection constructed around the existing monolithic concrete pipe. This was designed to be completed either by constructing a shaft at the tie-in location, or trenchlessly by tunnelling in from the MTBM shaft.

The use of circular chambers permitted a unique internal configuration where flows are piped through the chamber and into the siphon, as opposed to allowing flow to freely discharge into the chamber. The piping configuration is shown in Figure 8. This resulted in a significant reduction in head loss through the chamber and allowed for a reduction in the overall shaft size. Other unique design features of the chambers are:

- Full size (900 mm) access for cleaning and tool insertion, via a vertical launch tube
- Isolation valves (900 mm knife gates) for siphon operation and future leakage tests
- Helical drop pipe, permitting the change in flow direction from the connection to the tunnelled siphon beneath the river

HYDRAULICS:

A long-term operational plan was developed in conjunction with the design that included siphon operation under both dry and wet weather flow conditions. The existing 500 and 800 mm siphons, which conveyed all flows through the crossing, were found to have sufficient cleansing velocities and sufficient capacity to convey dry weather flows through the 2037 design horizon and beyond. Thus, the new 900 mm siphon would only be utilized to convey wet weather flows.

The City’s CSO master plan includes deployment of real time controls at this and other sites throughout the City, which would require the gates for the 900 mm siphon to open when levels reach a preset level, allowing flow through the new siphon. However, implementation of real time controls was not anticipated in the near term and thus physical means to control the flow was required. While traditionally this would be accomplished with a weir, however the size of the upstream and downstream chambers and the significant increase in head loss precluded their use. Taking advantage of the piped system shown in Figure 8, the

Table 1. Trenchless Technology Evaluation

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Microtunnelling</th>
<th>HDD</th>
<th>Direct Pipe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Feasibility:</td>
<td>Well within the technical envelope for the technology</td>
<td>Technically feasible but required bore path results in minimal tolerance for drilling errors</td>
<td>Not practical due to issues regarding the bore path and the transition from overburden to bedrock</td>
</tr>
<tr>
<td>Construction Risk:</td>
<td>Lower construction risk with respect to other trenchless technologies</td>
<td>High construction risk related to potential for miss alignment at rock interface</td>
<td>Need for a casing through the overburden soils. Difficulty in maintaining the bore path alignment at the soil/rock interface.</td>
</tr>
<tr>
<td></td>
<td>Risks associated with rock quality/hardness and equipment failure.</td>
<td>Potential for overstressing the steel pipe if bending radii decrease due to steering related issues.</td>
<td>Potential for overstressing the steel pipe if bending radii decrease due to steering related issues.</td>
</tr>
<tr>
<td>Cost:</td>
<td>$10M to $11M</td>
<td>$8M to $9M</td>
<td>Not Evaluated</td>
</tr>
<tr>
<td>Recommendation:</td>
<td>Recommended</td>
<td>Not Recommended</td>
<td>Not Recommended</td>
</tr>
</tbody>
</table>

Figure 6. Microtunnelling Profile

Figure 7. Upstream Tie-In Shaft Location
invert of the piping within the siphon chambers was raised 1 m above the invert of the existing interceptor. This brought the pipe invert on the upstream side of the siphon above the peak dry weather HGL for both the current and 2037 design horizon and precludes dry weather flows from entering the new 900 mm siphon.

GEOTECHNICAL BASELINE REPORT

A Geotechnical Baseline Report (GBR) was prepared for the project detailing baseline conditions for both the tunnelling and shaft construction works. The intent of the GBR and accompanying data report was to provide the contractor with all applicable geotechnical and hydrogeological information and define a contractual baseline for geological condition on site. Any claims related to changes in soil and/or bedrock conditions on site would be evaluated based on the contents and baseline set forth in the GBR.

PROCUREMENT

REQUEST FOR QUALIFICATIONS:

Due to the unique nature of the work and limited contractor base in North America a Request for Qualification (RFQ) was issued in early 2018. The RFQ focused on several key features of the proposed work:

• Microtunnelling where external intervention was not feasible (e.g., beneath a river)

• Microtunnelling through bedrock of similar strengths and quality of that found on site

• Construction of sealed MTBM launch and reception shafts

• Construction of MTBM launch and reception shafts in bedrock

A total of three contractors submitted qualifications and were all deemed qualified to complete the work.

TENDERING:

The construction contract was tendered to the three pre-qualified contractors in May 2018, with a commencement date of October 2018 and a completion date of March 2019. The targeted winter construction schedule allowed for minimal impact to the Kildonan Park Golf Course and the multiuse path construction project. At the time of closing, only one bid submission was received for $12.1M from Ward and Burke Microtunnelling. Their submission also included an alternative bid for $10.1M based on an alternative schedule that had construction commencing in the summer of 2018 and completing in the fall of 2019 with a break for the winter.

The City accepted the alternative bid and awarded the construction contract to Ward and Burke Microtunnelling in July 2018. Construction commenced in August 2018 and is expected to be complete in the fall of 2019.

CONCLUSION

The NE Interceptor and the Red River crossing are critical components of the City’s wastewater collection system. Augmenting the capacity of the existing siphon with a new 900 mm siphon will reduce basement flooding risk in the upstream system and permit future rehabilitation of the existing siphons, extending their useful lifespan well into the future.

The design of the new siphon crossing from preliminary hydraulics to detailed design and tendering had to consider both functionality and constructability of every component due to the extremely constrained work sites. The constrained nature of the site resulted in the elimination of trenchless technologies that posed excessive construction risk and the design of unique siphon chambers.

The construction contract was developed with the intent of maintaining as much flexibility as possible for the Contactor to select their means and methods while protecting existing infrastructure and meeting the project requirements for long-term performance. Examples of this include tendering multiple acceptable microtunnelling pipe materials and designing siphon chambers compatible with a wide range of shaft construction techniques.

Ultimately, the construction contract was tendered successfully and awarded to Ward and Burke Microtunnelling. Construction commenced in August of 2018 and is expected to be complete in the fall of 2019.

Figure 8. Chamber Piping Configuration

Copyright 2019 by the North American Society for Trenchless Technology.

Original paper distributed at the NASTT 2019 No-Dig Show.

All rights reserved.

www.nastt.org
The NASTT 2020 No-Dig Show Municipal & Public Utility Scholarship Award has been established to provide education and training for North American municipalities, government agencies and utility owners who have limited or no travel funds due to restricted budgets.

Selected applicants will be awarded complimentary full conference registration to The NASTT 2020 No-Dig Show in Denver, Colorado, April 5-9, 2020. One day conference registrations will also be available. Registration includes full access to all exhibits and technical paper sessions... all you have to do is get yourself to the conference! Selected applicants will also be eligible to receive overnight accommodations. Selection based on responses to the application as well as need.

Apply today!
Application deadline is November 1, 2019.

Apply for complimentary registration, hotel accommodations and more! VISIT: NASTT.ORG/MUNICIPALScholarship TODAY.
Reach Our Advertisers

<table>
<thead>
<tr>
<th>COMPANY NAME</th>
<th>PAGE</th>
<th>PHONE</th>
<th>WEBSITE/EMAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D Pipe Bursting</td>
<td>26</td>
<td>780-387-1075</td>
<td>www.3dpipebursting.com</td>
</tr>
<tr>
<td>Akkerman Inc.</td>
<td>6</td>
<td>800-533-0386</td>
<td>www.akkerman.com</td>
</tr>
<tr>
<td>Allstream Waste Solutions Inc.</td>
<td>18</td>
<td>519-639-0067</td>
<td>www.allstreamwaste.com</td>
</tr>
<tr>
<td>Associated Engineering Group Ltd.</td>
<td>4</td>
<td>604-293-1411</td>
<td>www.ae.ca</td>
</tr>
<tr>
<td>Brandt Tractor Ltd.</td>
<td>20</td>
<td>888-2BRANDT</td>
<td>www.brandttractor.com</td>
</tr>
<tr>
<td>Direct Horizontal Drilling</td>
<td>3</td>
<td>780-960-6037</td>
<td>www.directhorizontal.com</td>
</tr>
<tr>
<td>Earthworm Horizontal Drilling Ltd.</td>
<td>16</td>
<td>250-962-9682</td>
<td>www.earthwormdrilling.ca</td>
</tr>
<tr>
<td>Empipe Solutions Ltd.</td>
<td>17</td>
<td>905-531-1316</td>
<td>www.empipe.ca</td>
</tr>
<tr>
<td>Hobas Pipe</td>
<td>9</td>
<td>949-795-5800</td>
<td>www.hobas.ca</td>
</tr>
<tr>
<td>Infratech Sewer & Water Services Inc.</td>
<td>10</td>
<td>705-524-6372</td>
<td>www.infratechservices.ca</td>
</tr>
<tr>
<td>Insituform Technologies</td>
<td>32</td>
<td>800-234-2992</td>
<td>www.insituform.com</td>
</tr>
<tr>
<td>IVIS Inc.</td>
<td>8</td>
<td>780-476-2626</td>
<td>www.ivisinc.com</td>
</tr>
<tr>
<td>Kayden Industries</td>
<td>31</td>
<td>403-571-6688</td>
<td>www.kaydenindustries.com</td>
</tr>
<tr>
<td>Michael Byrne Manufacturing</td>
<td>18</td>
<td>800-613-7206</td>
<td>www.byrneigroup.com</td>
</tr>
<tr>
<td>MetaFLO Technologies</td>
<td>13</td>
<td>888-862-4011</td>
<td>www.metaflotech.com</td>
</tr>
<tr>
<td>Michels Canada</td>
<td>25</td>
<td>780-955-2120</td>
<td>www.michelscanada.com</td>
</tr>
<tr>
<td>PE Equipment</td>
<td>11</td>
<td>406-499-8136</td>
<td>www.pe-equipment.com</td>
</tr>
<tr>
<td>Precise Crossings Ltd.</td>
<td>22</td>
<td>866-962-6882</td>
<td>www.precisecrossings.com</td>
</tr>
<tr>
<td>Precon</td>
<td>26</td>
<td>800-661-8020</td>
<td>www.precon.ca</td>
</tr>
<tr>
<td>Sameng Inc.</td>
<td>16</td>
<td>780-482-2557</td>
<td>www.sameng.com</td>
</tr>
<tr>
<td>Stantec Consulting</td>
<td>7</td>
<td>780-917-7000</td>
<td>www.stantec.com</td>
</tr>
<tr>
<td>Thurber Engineering Ltd.</td>
<td>22</td>
<td>403-253-9217</td>
<td>www.thurber.ca</td>
</tr>
<tr>
<td>Thuro Inc.</td>
<td>11</td>
<td>403-243-0276</td>
<td>www.thuro.ca</td>
</tr>
<tr>
<td>WSP</td>
<td>2</td>
<td>780-410-6751</td>
<td>www.wsp.com</td>
</tr>
</tbody>
</table>

To reach the targeted readership of the *NASTT-NW Journal* please contact Chad:
Chad Morrison • 1-866-985-9788 • chad@kelman.ca

Please support these advertisers who make *NASTT-NW Journal* possible.
CENTRIFUGES BUILT FOR HDD

1.855.571.6688 | KAYDENINDUSTRIES.COM
NEED TO REHAB PIPELINES?

SEE INSITUFORM.

For over 45 years, Insituform has been a leader in trenchless pipeline rehabilitation.

Insituform® CIPP
Tyfo® Fibrwrap® system
Restore structural integrity
ISO 9001:2008 certified
Turnkey solutions
Suitable for high pressure
Reduce infiltration

AEGION

Stronger. Safer. Infrastructure.

844.589.2469
www.aegion.com/infrastructure-solutions

AEGION COMPANIES
Aegion Coating Services, AllSafe, The Bayou Companies, Brinderson, Corrpro, Fibrwrap Construction, Fyfe Co., Insituform, MTC, Schultz, Underground Solutions and United Pipeline Systems