WASHINGTON – The U.S. Environmental Protection Agency (EPA) today announced the winners of its fourth annual Campus RainWorks Challenge, a design competition created to engage college and university students in reinventing our nation’s water infrastructure and developing green infrastructure systems to reduce stormwater pollution and build resilience to climate change. Student teams proposed innovative green infrastructure designs help aid in the development of more sustainable communities.

Stormwater is one of the nation’s most widespread challenges to water quality. Large volumes of stormwater pollute our nation’s streams, rivers and lakes, posing a threat to human health and the environment and contribute to downstream flooding. The Campus RainWorks Challenge engages students and faculty members at colleges and universities to apply green infrastructure principles and design, foster interdisciplinary collaboration, and increase the use of green infrastructure on campuses across the nation.

“Our Campus RainWorks Challenge winners inspire the next generation of green infrastructure designers and planners,” said Joel Beauvais, deputy assistant administrator for EPA’s Office of Water. “All the submissions included innovative approaches to stormwater management. I want to congratulate the University of Texas at Arlington and the University of Maryland for their winning submissions.” Mr. Beauvais announced the winners of the Challenge at an event at the University of Texas at Arlington on Thursday, April 21.

EPA invited student teams to compete in two design categories — the Master Plan category, which examines how green infrastructure could be integrated into a broad area of a school’s campus, and the Demonstration Project category, which examines how green infrastructure could be integrated into a particular site on the team’s campus. Teams of undergraduate and graduate students, working with a faculty advisor, developed innovative green infrastructure designs in one of the categories, showing how managing stormwater at its source can benefit the campus community and the environment.

The 2015 challenge winners are:

University of Texas at Arlington (1st Place, Master Plan category) – The team’s design concept, titled, “Eco-Flow: A Water-Sensitive Placemaking Response to Climate Change,” transforms the campus through green infrastructure placed in relation to the natural water flow of Trading House Creek. The creek flows from northwest to south connecting the campus. The plan proposes to increase biodiversity, restore soil quality and watershed hydrology, and implement photovoltaic cells to supply alternative energy. The plan has the potential to reduce stormwater runoff 25 inches annually, generate more than 1 million kilowatt hours each year, increase campus tree coverage 89 percent, and mitigate 5,000 tons of CO2.

University of Maryland, College Park (1st Place, Demonstration Project category) – The design is centered on reimagining a major, five-acre parking lot to retrofit it for improved stormwater management. The design features reduce 40 percent of impervious surface; add over 17,000 square feet of new vegetation space, 56 new trees for shaded parking spaces, and 8,640 square feet of pedestrian space; and, reduce 12.3 metric tons of CO2 annually. The team’s design has good potential for implementing on other campuses.

Stevens Institute of Technology (2nd Place, Master Plan category) – The team proposed the first stormwater management plan for the Stevens’ campus, “The Living Laboratory.” The design includes 29 green infrastructure techniques, which have been applied to problem areas to reduce runoff, contaminant discharge and potable water usage. The Living Laboratory provides a practical example for urban campus green infrastructure and introduces classroom and community educational opportunities. The team worked with Stevens Facilities and Events Management to ensure the proposed design is aligned with future growth of campus, can be maintained, is aesthetically pleasing and economically responsible.

University of California, Berkeley (2nd Place, Demonstration Project category) – The team chose a creek site on campus that was the university’s first botanical garden with many artificial landscape features that cause drainage problems. While it is home to a legacy of exotic plants, the site lacks habitat conducive to supporting native species and reducing runoff. The team proposes a design that will store 37,000 cubic feet of stormwater runoff, increase pervious surface are by 33 percent and increase native plant species. The design has potential to reduce flooding and restore the ecological diversity of the area.

EPA also recognized teams from the University of Texas at Arlington (Master Plan category) and Northeastern University (Demonstration Project category) as honorable mentions for their entries.

EPA will announce the fifth annual Campus RainWorks Challenge in the summer of 2016.

Green infrastructure tools and techniques include green roofs, permeable materials, alternative designs for streets and buildings, trees, rain gardens and rain harvesting systems. Utilizing these tools decreases pollution to local waterways by treating rain where it falls and keeping polluted stormwater from entering sewer systems. Communities are increasingly using innovative green infrastructure to supplement “gray” infrastructure such as pipes, filters, and ponds. Green infrastructure reduces water pollution while increasing economic activity and neighborhood revitalization, job creation, energy savings, and open space.

More information: https://www.epa.gov/green-infrastructure/2015-campus-rainworks-challenge